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Abstract

We solve the task of combining two inde-

pendent Statistical Shape Models (SSM).

We obtain the complete joint probability dis-

tribution of the human head by combining

a face shape model [2] and a skull shape

model [3].

The models are joint with independent

tissue-depth information [4] using Markov

Chain Monte Carlo (MCMC).

With the joint face-skull probability distribution we show how:

⌅ facial reconstruction can be described as a conditional distribution of

plausible face shapes given a skull shape.

⌅ face photographs can be ranked according to their likelihood of

corresponding to a given skull.

⌅ to estimate the skull pixels in an MR-image.

Statistical Shape Models

Our Statistical Shape Models (SSMs) are created as Gaussian Process

Morphable Model (GPMM) [5]. The face and skull models are created

independently from sets of example shapes.
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Mean shapes and the first 2 principal components (PC) of the face and

skull shape models.

Combining the models
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The full distribution of face shapes

over a given skull shape is estimated

with MCMC by sampling random

face shapes from the face shape

model.
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The joint face-skull distribution is mod-

elled as a multivariate Gaussian distri-

bution over face and skull shape.

�F ,�S ⇠ N (µF ;µS,⌃F ;⌃S)

MRI Skull Segmentation: Conditioning the joint model on a face
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Simulating the Joint Face-Skull Distribution

The face distribution for each skull shape is de-

fined by multiple likelihood terms:

⌅ Tissue-vector intersection depth

⌅ Tissue-vector symmetry

⌅ Face in skull detection

⌅ Point correspondence (in a single point)

P (~✓|Dtvi, Dsym, c,Dcs) /
P (~✓)Ptvi(D

tvi|~✓)Ptvs(D
sym|~✓)Pfs(c|~✓)Pcs(D

cs|~✓).

Experiment - Face identification given a skull

Unknown skull

Face identification for the skull (top+bottom 3)

1 2 3 7 8 9

The 3D face database is

projected into the combined

conditioned model. The

faces are ranked according

to their likelihood to fit the

skull.

The number next to the ex-

periment (listed below) men-

tions the number of faces in

the face database.

Results of the identifica-

tion experiment with 9

skulls. In all the experi-

ments we get a consistent

top 30% average identifi-

cation result.

Experiment µ µ norm � Min Max

MRI (9) 2.44 0.27 1.67 1 5

Scan (9) 2.89 0.32 1.54 1 5

Photo (9) 3.00 0.33 1.80 1 6

Scan (306) 91.89 0.30 44.23 26 159

Photo (106) 31.56 0.29 27.03 4 82

Model evaluation

Evaluation of the number of PC’s used in the face identification experi-

ment. We find that around 50 PC’s gives the best result. From this, we

conclude that it is not only the size but a combination of different skull

shape characteristics which are needed to identify the likely faces.
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[5] M. Lüthi, T. Gerig, C. Jud, and T. Vetter, “Gaussian process morphable models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

www.gravis.dmi.unibas.ch/pmm github.com/unibas-gravis/scalismo dennis.madsen@unibas.ch

https://gravis.dmi.unibas.ch/PMM/
https://github.com/unibas-gravis/scalismo
mailto:dennis.madsen@unibas.ch

