Probability Theory Refresher for Pattern Recognition Students

Dennis Madsen

Pattern Recognition vs Machine Learning

Bishop, Preface: "Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field".

Motivation

Why do we need probability theory???

Probability and Statistics

To model

- > Variability of pattern itself
- > Variability of measurement (noise)
- > Uncertainty in our model

Variability of a pattern - Digit 4

$$(10x10)^2 = 10.000$$

Variability of a pattern - Digit 4

$$(10 \times 10)^2 = 10.000$$

$$(200 \times 200)^2 = 1.600.000.000$$

Bishop 2009

Variability of a pattern - Dog

Variability of measurement (noise)

Uncertainty in the model

Motivation

Why do we need probability theory??

Probability and Statistics

To model

- > Variability of pattern itself
- > Variability of measurement (noise)
- Uncertainty in our model

Motivation

Why do we need probability theory??

Probability and Statistics

To model

- Variability of pattern itself
- > Variability of measurement (noise)
- > Uncertainty in our model
- \Rightarrow A short repetition of probability theory in the context of pattern recognition
 - > First Part: Theory ightarrow quick reference for you
 - > Second Part: Multivariate Gaussian as an example

Basic Probability

Probability theory \rightarrow chance

Basic Probability

Probability theory → chance

Coin flip

$$P(\textit{Head}) = \frac{\text{number of favourable outcoms}}{\text{total possible outcomes}} = \frac{1}{2}$$

Basic Probability

Probability theory → chance

Coin flip

$$P(Head) = \frac{\text{number of favourable outcoms}}{\text{total possible outcomes}} = \frac{1}{2}$$
 $P(Head) = \frac{1}{2} = 0.5 = 50\%$

Probability theory → chance

Coin flip

$$P(\textit{Head}) = \frac{\text{number of favourable outcoms}}{\text{total possible outcomes}} = \frac{1}{2}$$
 $P(\textit{Head}) = \frac{1}{2} = 0.5 = 50\%$

Rolling a die

$$P(6) = \frac{1}{6}$$

Probability theory → chance

Coin flip

$$P(\textit{Head}) = \frac{\text{number of favourable outcoms}}{\text{total possible outcomes}} = \frac{1}{2}$$
 $P(\textit{Head}) = \frac{1}{2} = 0.5 = 50\%$

Rolling a die

$$P(6) = \frac{1}{6}$$
 $P(\tilde{6}) = 1 - P(6)$

Probability theory → chance

Coin flip

$$P(\textit{Head}) = \frac{\text{number of favourable outcoms}}{\text{total possible outcomes}} = \frac{1}{2}$$
 $P(\textit{Head}) = \frac{1}{2} = 0.5 = 50\%$

Rolling a die

$$P(6) = \frac{1}{6}$$
 $P(\tilde{6}) = 1 - P(6) = 1 - \frac{1}{6} = \frac{5}{6}$

Coin flip

 $coin \in \{head, tail\}$

Coin flip

 $coin \in \{head, tail\}$

Rolling a die

 $die \in \{1, 2, 3, 4, 5, 6\}$

Coin flip

$$coin \in \{head, tail\}$$

Rolling a die

$$die \in \{1, 2, 3, 4, 5, 6\}$$

Rolling a die and doing a Coin flip

$$mix \in \{1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T\}$$

Coin flip

$$coin \in \{head, tail\}$$

Rolling a die

$$die \in \{1, 2, 3, 4, 5, 6\}$$

Rolling a die and doing a Coin flip

$$\textit{mix} \in \{1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T\}$$
 Joint probability distribution $P(\textit{die}, \textit{coin})$

Coin flip

$$coin \in \{head, tail\}$$

Rolling a die

$$die \in \{1, 2, 3, 4, 5, 6\}$$

Rolling a die and doing a Coin flip

$$mix \in \{1H, 2H, 3H, 4H, 5H, 6H, 1T, 2T, 3T, 4T, 5T, 6T\}$$

Joint probability distribution P(die, coin)

$$P(2T) = \frac{1}{12}, P(2) = \frac{2}{12} = \frac{1}{6}, P(H|5) = 0.5$$

Random Variable X with possible Realisations $x \in \{1, 2, 3, ...\}$ (sample space):

Random Variable X with possible Realisations $x \in \{1, 2, 3, ...\}$ (sample space):

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Random Variable X with possible Realisations $x \in \{1, 2, 3, ...\}$ (sample space):

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Probability Mass Function

$$P[X=x]=P_x$$

Random Variable X with possible Realisations $x \in \{1, 2, 3, ...\}$ (sample space):

Cumulative Distribution Function (cdf)

$$P[X < x] = F(x)$$

Probability Mass Function

$$P[X=x]=P_x$$

Normalization and Positivity

$$\sum_{x} P_{x} = 1 \qquad P_{x} \ge 0$$

Discrete Random Variables — Examples

$\mathsf{Binomial} - \mathsf{A} \, \, \mathsf{coin} \, \, \mathsf{flip}$

$$x \in \{0, 1\}$$
 $P_0 = P[X = 0] = p, P_1 = P[X = 1] = q$
 $p \in [0, 1], q = 1 - p$

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x): P[X < x] = F(x)$$

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x): \qquad P[X < x] = F(x)$$

Probability Density Function (pdf)

$$p(x): \qquad P[x < X < x + dx] = p(x) dx \qquad = dF(x)$$

Random Variable X with possible Realisations $x \in \mathbb{R}$:

Cumulative Distribution function (cdf)

$$F(x): \qquad P[X < x] = F(x)$$

Probability Density Function (pdf)

$$p(x): \qquad P[x < X < x + dx] = p(x) dx \qquad = dF(x)$$

Normalisation and Positivity

$$\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1 \qquad p(x) \ge 0$$

Continuous Random Variables — Examples

Gaussian (normal)

$$X \sim \mathcal{N}(\mu, \sigma^2), \quad x \in \mathbb{R}$$

$$X \sim \mathcal{N}(\mu, \sigma^2), \quad x \in \mathbb{R}$$
 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Mean μ , Variance σ^2

Example: Gaussian

wikipedia.org

Example: Gaussian Shape

No. of standard deviations from the mean

analystprep.com

Mean

> The mean is a measure for central tendency

Expected Value, Mean, Expectation

$$E[X] = \sum_{x} x P_x$$
 $E[X] = \int x p(x) dx$

Variance

> The variance is a measure for **spread**

Variance / Standard Deviation

$$V[X] = E[(X - E[X])^{2}]$$

$$sd[X] = \sigma_{X} = \sqrt{V[X]}$$

Variance

> The variance is a measure for **spread**

Variance / Standard Deviation

$$V[X] = E[(X - E[X])^{2}]$$

$$sd[X] = \sigma_{X} = \sqrt{V[X]}$$

Hint:
$$V[X] = E[X^2] - E[X]^2$$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

Length L and Weight W of an object

$$\vec{X} = [L, W]^{\top}$$

Multivariate Case

Multiple Random Variables

Example

More than one Random Variable, e.g.

Length L and Weight W of an object

$$\vec{X} = [L, W]^{\mathsf{T}}$$

Joint Probability

$$P[X = x \land Y = y] = P_{xy}$$
$$p(x, y)$$

Marginals and Conditionals

Marginalisation

$$P[X = x] = \sum_{y} P[X = x, Y = y]$$
$$p(x) = \int p(x, y) \, dy$$

Marginals and Conditionals

Marginalisation

$$P[X = x] = \sum_{y} P[X = x, Y = y]$$
$$p(x) = \int p(x, y) \, dy$$

Conditional Probability

$$P[X = x \mid Y = y] = \frac{P[X = x, Y = y]}{P[Y = y]} \qquad P[Y = y] > 0$$
$$p(x \mid y) := \frac{p(x, y)}{p(y)}$$

$$p(x,y) = p(x \mid y) \ p(y)$$

$$p(x,y) = p(y \mid x) \ p(x)$$

$$p(x,y) = p(x \mid y) \ p(y)$$

$$p(x,y) = p(y \mid x) \ p(x)$$

$$P_{x|y} = \frac{P_{y|x}P_y}{P_y}$$

$$P_{x|y} = \frac{P_{y|x}P_x}{P_y}$$
$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

$$p(x, y) = p(x \mid y) \ p(y)$$
$$p(x, y) = p(y \mid x) \ p(x)$$

$$P_{x|y} = \frac{P_{y|x}P_x}{P_y}$$
$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

$$\Rightarrow P(\omega_i | \underline{x}) = \frac{p(\underline{x} | \omega_i) P(\omega_i)}{p(\underline{x})}$$

$$p(x, y) = p(x \mid y) \ p(y)$$
$$p(x, y) = p(y \mid x) \ p(x)$$

$$P_{x|y} = \frac{P_{y|x}P_x}{P_y}$$
$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

$$\Rightarrow P(\omega_i | \underline{x}) = \frac{p(\underline{x} | \omega_i) P(\omega_i)}{p(\underline{x})}$$

Bayesian talk: "Prior adapted to data leads to posterior"

Covariance and Independence

Covariance

$$Cov(X, Y) = E[(X - E[X]) (Y - E[Y])]$$
$$\Sigma(X) = E[(X - E[X])(X - E[X])^{T}]$$

Covariance and Independence

Covariance

$$Cov(X, Y) = E[(X - E[X]) (Y - E[Y])]$$
$$\Sigma(X) = E[(X - E[X])(X - E[X])^{T}]$$

Independence

$$p(x, y) = p(x)p(y) \iff X$$
 and Y are independent

Covariance and Independence

Covariance

$$Cov(X, Y) = E[(X - E[X]) (Y - E[Y])]$$
$$\Sigma(X) = E[(X - E[X])(X - E[X])^{T}]$$

Independence

$$p(x, y) = p(x)p(y) \iff X$$
 and Y are independent

Covariance ≠ Independence

$$X$$
 and Y are independent, $X \perp Y \implies Cov(X, Y) = 0$

Multivariate Gaussian (normal) Distribution

- > This distribution occurs very frequently
- > Simple enough to demonstrate these concepts

Multivariate Gaussian (normal) Distribution

- > This distribution occurs very frequently
- > Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

$$\rho\left(\vec{x}\right) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2} \left(\vec{x} - \vec{\mu}\right)^{\mathsf{T}} \mathbf{\Sigma}^{-1} \left(\vec{x} - \vec{\mu}\right)\right)$$

 $\vec{\mu}$ Mean

Covariance Matrix ($d \times d$, positive definite, symmetric)

 $|\mathbf{\Sigma}|$ Determinant of Σ

Number of dimensions

$$ec{X} \sim \mathcal{N}(ec{\mu}, \mathbf{\Sigma})$$

For the Multivariate normal distribution, $Cov(X, Y) = 0 \iff X \perp Y$.

2D Gaussian — Contour Plot

- > Points on a contour have equal probability density equidensity lines
- > Contours are ellipsoids

Figure: Bishop 2009

2D Gaussian — Samples / Scatter

Equidensity lines are Ellipsoids

> The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

Equidensity lines are Ellipsoids

The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

- ∑ is positive definite and symmetric ⇒ Ellipsoid
- > Center at $ec{\mu}$

Equidensity lines are Ellipsoids

The ellipsoids are determined by the quadratic form

$$(\vec{x} - \vec{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\vec{x} - \vec{\mu})$$

- ∑ is positive definite and symmetric ⇒ Ellipsoid
- > Center at $\vec{\mu}$
- > Eigenvectors and eigenvalues of Σ

$$\mathbf{\Sigma}\vec{e}_i = \lambda_i\vec{e}_i$$

- > Direction of semi-axes is determined by eigenvectors \vec{e}_i
- $\geq \lambda_i$ measures the variance along the corresponding eigendirection $ec{e}_i$

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu}$$
 $E[X_i] = \mu_i$

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu}$$
 $E[X_i] = \mu_i$

Covariance

$$V[\vec{X}] = \mathbf{\Sigma}$$
 $Cov(X_i, X_j) = \Sigma_{ij}, \qquad \sigma_i = \sqrt{\Sigma_{ii}}$

Moments of a Multivariate Gaussian Distribution

Mean

$$E[\vec{X}] = \vec{\mu}$$
 $E[X_i] = \mu_i$

Covariance

$$V[\vec{X}] = \mathbf{\Sigma}$$
 $Cov(X_i, X_j) = \Sigma_{ij}, \qquad \sigma_i = \sqrt{\Sigma_{ii}}$

Correlation

$$\mathsf{Cor}(X_i, X_j) = \rho_{ij} = \frac{\mathsf{Cov}(X_i, X_j)}{\sigma_i \sigma_j} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii} \Sigma_{jj}}}$$

Correlation and Covariance

- > Correlation measures strength of linear relations between variables
- > It does not measure independence
- > It does not tell you anything about causal relations
- > Correlation is normalized and dimensionless
- > Covariance is in units obtained by multiplying the units of the two variables

Example

Marginals

- > Marginal
- > Removing unknown variables "projection"

$$p(x) = \int p(x, y) dy$$

Marginals

- > Marginal
- > Removing unknown variables "projection"

$$p(x) = \int p(x, y) dy$$

Marginal of a Gaussian

$$ec{X} \sim \mathcal{N}(ec{\mu}, \mathbf{\Sigma})$$
 $ec{X} = egin{bmatrix} ec{X}_a \ ec{X}_b \end{bmatrix}, \quad ec{oldsymbol{\mathcal{L}}} = egin{bmatrix} ec{\mathcal{L}}_{ab} \ ec{\mathbf{\Sigma}}_{ba} & \mathbf{\Sigma}_{bb} \end{bmatrix}$

Marginals

- > Marginal
- > Removing unknown variables "projection"

$$p(x) = \int p(x, y) dy$$

Marginal of a Gaussian

$$ec{X} \sim \mathcal{N}(ec{\mu}, \mathbf{\Sigma})$$
 $ec{X} = \begin{bmatrix} ec{X}_{a} \\ ec{X}_{b} \end{bmatrix}, \quad ec{\mu} = \begin{bmatrix} ec{\mu}_{a} \\ ec{\mu}_{b} \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \\ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{bmatrix}$
 $p(ec{x}_{a}) = \mathcal{N}(ec{x}_{a} \mid ec{\mu}_{a}, \mathbf{\Sigma}_{aa})$

Conditionals

- Conditional distribution
- > Fixing a variable to a certain value "slices"

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

Conditionals

- Conditional distribution
- > Fixing a variable to a certain value "slices"

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

Conditional of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_{a} \\ \vec{X}_{b} \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_{a} \\ \vec{\mu}_{b} \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \\ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{bmatrix}$$

$$p(\vec{x}_{a} \mid \vec{X}_{b} = \vec{x}_{b}) = \mathcal{N}(\vec{x}_{a} \mid \vec{\mu}_{a|b}, \mathbf{\Sigma}_{a|b})$$

Conditionals

- Conditional distribution
- > Fixing a variable to a certain value "slices"

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

Conditional of a Gaussian

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma})$$

$$\vec{X} = \begin{bmatrix} \vec{X}_{a} \\ \vec{X}_{b} \end{bmatrix}, \quad \vec{\mu} = \begin{bmatrix} \vec{\mu}_{a} \\ \vec{\mu}_{b} \end{bmatrix}, \quad \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{aa} & \mathbf{\Sigma}_{ab} \\ \mathbf{\Sigma}_{ba} & \mathbf{\Sigma}_{bb} \end{bmatrix}$$

$$p(\vec{x}_{a} \mid \vec{X}_{b} = \vec{x}_{b}) = \mathcal{N}(\vec{x}_{a} \mid \vec{\mu}_{a|b}, \mathbf{\Sigma}_{a|b})$$

$$\vec{\mu}_{a|b} = \vec{\mu}_{a} + \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} (\vec{x}_{b} - \vec{\mu}_{b})$$

$$\mathbf{\Sigma}_{a|b} = \mathbf{\Sigma}_{aa} - \mathbf{\Sigma}_{ab} \mathbf{\Sigma}_{bb}^{-1} \mathbf{\Sigma}_{ba}$$

Marginal and Conditional of a Gaussian

Marginal and Conditional of a Gaussian

Bishop 2009

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (**A** and \vec{b} are constant)

Affine Transformations

- Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (**A** and \vec{b} are constant)

Affine Transform

$$\begin{split} \vec{X} &\sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma}) & \vec{X} \in \mathbb{R}^d \\ \vec{Y} &= \mathbf{A}\vec{X} + \vec{b} & \vec{Y} \in \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{n \times d}, \ \vec{b} \in \mathbb{R}^n \\ \vec{Y} &\sim \mathcal{N}(\vec{y} \mid \vec{\mu}_Y, \mathbf{\Sigma}_Y) \end{split}$$

Affine Transformations

- > Gaussians are stable under affine transforms
- Affine transformation: $\vec{Y} = \mathbf{A}\vec{X} + \vec{b}$ (**A** and \vec{b} are constant)

Affine Transform

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma}) \qquad \vec{X} \in \mathbb{R}^{d}$$

$$\vec{Y} = \mathbf{A}\vec{X} + \vec{b} \qquad \vec{Y} \in \mathbb{R}^{n}, \ \mathbf{A} \in \mathbb{R}^{n \times d}, \ \vec{b} \in \mathbb{R}^{n}$$

$$\vec{Y} \sim \mathcal{N}(\vec{y} \mid \vec{\mu}_{Y}, \mathbf{\Sigma}_{Y})$$

$$\vec{\mu}_{Y} = \mathbf{A}\vec{\mu} + \vec{b}$$

$$\mathbf{\Sigma}_{Y} = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{T}$$

Standard Normal

Univariate Standard Normal

$$egin{aligned} X & \sim \mathcal{N}(0,1) \ \mu = 0 & \sigma = 1 \end{aligned}$$

Multivariate Standard Normal

$$ec{X} \sim \mathcal{N}(0, \mathbf{I}_d)$$
 $ec{\mu} = 0$ $\mathbf{\Sigma} = \mathbf{I}$

$$\vec{\iota} = 0$$
 $\mathbf{\Sigma} = \mathbf{I}$

Standardizing

- \geq Transform a normal distributed variable X into a standard normal Z:
- > Also called whitening or Z transform / score

Standardizing

- \supset Transform a normal distributed variable X into a standard normal Z:
- > Also called whitening or **Z** transform / score

Univariate

$$X \sim \mathcal{N}(\mu, \sigma^2) \quad o \quad Z = rac{X - \mu}{\sigma} \quad o \quad Z \sim \mathcal{N}(0, 1)$$

Standardizing

- Transform a normal distributed variable X into a standard normal Z:
- > Also called whitening or Z transform / score

Univariate

$$X \sim \mathcal{N}(\mu, \sigma^2) \quad o \quad Z = rac{X - \mu}{\sigma} \quad o \quad Z \sim \mathcal{N}(0, 1)$$

Multivariate

$$\vec{X} \sim \mathcal{N}(\vec{\mu}, \mathbf{\Sigma}) \rightarrow \vec{Z} = \mathbf{\Sigma}^{-\frac{1}{2}} (\vec{X} - \vec{\mu}) \rightarrow \vec{Z} \sim \mathcal{N}(0, \mathbf{I})$$
use $\mathbf{\Sigma} = \mathbf{U}\mathbf{D}^2\mathbf{U}^{\mathsf{T}} \Rightarrow \mathbf{\Sigma}^{\frac{1}{2}} = \mathbf{U}\mathbf{D}$

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

- Gaussians have only a single mode
 - Can use a mixture of Gaussians here

When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies to your problem:

- > Gaussians have only a single mode
 - > Can use a mixture of Gaussians here
- Gaussians do not have heavy tails
 - 🔋 In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow

Sandro Schöenborn
Adam Kortylewski