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Pattern Recognition vs Machine Learning

Bishop, Preface: ”Pattern recognition has its origins in engineering, whereas machine learning grew out of

computer science. However, these activities can be viewed as two facets of the same field ”.
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Motivation
Why do we need probability theory???

Probability and Statistics

To model

Variability of pattern itself

Variability of measurement (noise)

Uncertainty in our model
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Variability of a pattern - Digit 4

(10x10)2 = 10.000

(200x200)2 = 1.600.000.000

Bishop 2009
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Variability of a pattern - Dog
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Variability of measurement (noise)

Bishop 2009
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Uncertainty in the model

Bishop 2009
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Motivation
Why do we need probability theory??

Probability and Statistics

To model

Variability of pattern itself

Variability of measurement (noise)

Uncertainty in our model

⇒ A short repetition of probability theory in the context of pattern recognition

First Part: Theory → quick reference for you

Second Part: Multivariate Gaussian as an example
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Basic Probability

Probability theory → chance

Coin flip

P(Head) =
number of favourable outcoms

total possible outcomes
=

1

2

P(Head) =
1

2
= 0.5 = 50%

Rolling a die

P(6) = 1
6

P(6̃) = 1− P(6)= 1− 1
6

= 5
6
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Sample space

Coin flip

coin ∈ {head , tail}

Rolling a die

die ∈ {1, 2, 3, 4, 5, 6}

Rolling a die and doing a Coin flip

mix ∈ {1H, 2H, 3H, 4H, 5H, 6H, 1T , 2T , 3T , 4T , 5T , 6T}

Joint probability distribution P(die, coin)

P(2T ) =
1

12
,P(2) =

2

12
=

1

6
,P(H|5) = 0.5
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Discrete Random Variables

Random Variable X with possible Realisations x ∈ {1, 2, 3, . . .} (sample space):

Cumulative Distribution Function (cdf)

P[X < x ] = F (x)

Probability Mass Function

P[X = x ] = Px

Normalization and Positivity

∑
x

Px = 1 Px ≥ 0
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Discrete Random Variables — Examples

Binomial – A coin flip

x ∈ {0, 1}

P0 = P[X = 0] = p, P1 = P[X = 1] = q

p ∈ [0, 1], q = 1− p
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Continuous Random Variables

Random Variable X with possible Realisations x ∈ R:

Cumulative Distribution function (cdf)

F (x) : P[X < x ] = F (x)

Probability Density Function (pdf)

p(x) : P[x < X < x + dx ] = p(x) dx = dF (x)

Normalisation and Positivity

∫ ∞
−∞

p(x) dx = 1 p(x) ≥ 0
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Continuous Random Variables — Examples

Gaussian (normal)

X ∼ N (µ, σ2), x ∈ R

p(x) =
1√

2πσ2
e
− (x−µ)2

2σ2

Mean µ, Variance σ2
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Example: Gaussian

φ μ
,σ

2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

wikipedia.org
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Example: Gaussian Shape

analystprep.com
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Mean

The mean is a measure for central tendency

Expected Value, Mean, Expectation

E [X ] =
∑
x

xPx E [X ] =

∫
xp(x) dx
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Variance

The variance is a measure for spread

Variance / Standard Deviation

V [X ] = E [(X − E [X ])2]

sd[X ] = σX =
√

V [X ]

Hint: V [X ] = E [X 2]− E [X ]2
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Multivariate Case
Multiple Random Variables

Example

More than one Random Variable, e.g.

Length L and Weight W of an object

~X = [L,W ]T

Joint Probability

P[X = x ∧ Y = y ] = Pxy

p(x , y)
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Marginals and Conditionals

Marginalisation

P[X = x ] =
∑
y

P[X = x ,Y = y ]

p(x) =

∫
p(x , y) dy

Conditional Probability

P[X = x | Y = y ] =
P[X = x ,Y = y ]

P[Y = y ]
P[Y = y ] > 0

p(x | y) :=
p(x , y)

p(y)
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Bayes’ Rules

Use the factorization for the joint probability density / distribution:

p(x , y) = p(x | y) p(y)

p(x , y) = p(y | x) p(x)

Px |y =
Py |xPx

Py

p(x | y) =
p(y | x)p(x)

p(y)

Bayesian talk: “Prior adapted to data leads to posterior”
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Covariance and Independence

Covariance

Cov(X ,Y ) = E [(X − E [X ]) (Y − E [Y ])]

Σ(X) = E [(X− E [X])(X− E [X])T]

Independence

p(x , y) = p(x)p(y) ⇐⇒ X and Y are independent

Covariance 6= Independence

X and Y are independent, X ⊥ Y =⇒ Cov(X ,Y ) = 0
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Multivariate Gaussian (normal) Distribution

This distribution occurs very frequently

Simple enough to demonstrate these concepts

Multivariate Gaussian Distribution

p (~x) =
1√

(2π)d |Σ|
exp

(
−1

2
(~x − ~µ)TΣ−1 (~x − ~µ)

)
~µ Mean

Σ Covariance Matrix (d × d , positive definite, symmetric)

|Σ| Determinant of Σ
d Number of dimensions

~X ∼ N (~µ,Σ)

For the Multivariate normal distribution, Cov(X ,Y ) = 0 ⇐⇒ X ⊥ Y .
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2D Gaussian — Surface Plot
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2D Gaussian — Contour Plot

Points on a contour have equal probability density - equidensity lines

Contours are ellipsoids

Figure: Bishop 2009
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2D Gaussian — Samples / Scatter
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Equidensity lines are Ellipsoids

The ellipsoids are determined by the quadratic form

(~x − ~µ)TΣ−1 (~x − ~µ)

Σ is positive definite and symmetric ⇒ Ellipsoid

Center at ~µ

Eigenvectors and eigenvalues of Σ
Σ~ei = λi~ei

Direction of semi-axes is determined by eigenvectors ~ei

λi measures the variance along the corresponding eigendirection ~ei
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Moments of a Multivariate Gaussian Distribution

Mean

E [~X ] = ~µ E [Xi ] = µi

Covariance

V [~X ] = Σ Cov(Xi ,Xj) = Σij , σi =
√

Σii

Correlation

Cor(Xi ,Xj) = ρij =
Cov(Xi ,Xj)

σiσj
=

Σij√
ΣiiΣjj
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Correlation and Covariance

Correlation measures strength of linear relations between variables

It does not measure independence

It does not tell you anything about causal relations

Correlation is normalized and dimensionless

Covariance is in units obtained by multiplying the units of the two variables

Example

Probability Theory Refresher for Pattern Recognition Students 29



Marginals

Marginal

Removing unknown variables — “projection”

p(x) =

∫
p(x , y)dy

Marginal of a Gaussian

~X ∼ N (~µ,Σ)

~X =

[
~Xa
~Xb

]
, ~µ =

[
~µa
~µb

]
, Σ =

[
Σaa Σab
Σba Σbb

]
p(~xa) = N (~xa | ~µa,Σaa)
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Conditionals

Conditional distribution

Fixing a variable to a certain value — “slices”

p(x | y) =
p(x , y)

p(y)

Conditional of a Gaussian

~X ∼ N (~µ,Σ)

~X =

[
~Xa
~Xb

]
, ~µ =

[
~µa
~µb

]
, Σ =

[
Σaa Σab
Σba Σbb

]
p(~xa | ~Xb = ~xb) = N (~xa | ~µa|b,Σa|b)

~µa|b = ~µa + ΣabΣ
−1
bb (~xb − ~µb)

Σa|b = Σaa −ΣabΣ
−1
bb Σba
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Marginal and Conditional of a Gaussian

Bishop 2009
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Marginal and Conditional of a Gaussian

Bishop 2009
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Affine Transformations

Gaussians are stable under affine transforms

Affine transformation: ~Y = A~X + ~b (A and ~b are constant)

Affine Transform

~X ∼ N (~µ,Σ) ~X ∈ Rd

~Y = A~X + ~b ~Y ∈ Rn, A ∈ Rn×d , ~b ∈ Rn

~Y ∼ N (~y | ~µY ,ΣY )

~µY = A~µ+ ~b

ΣY = AΣAT
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Standard Normal

Univariate Standard Normal

X ∼ N (0, 1)

µ = 0 σ = 1

Multivariate Standard Normal

~X ∼ N (0, Id)

~µ = 0 Σ = I
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Standardizing

Transform a normal distributed variable X into a standard normal Z :

Also called whitening or Z transform / score

Univariate

X ∼ N (µ, σ2) → Z =
X − µ
σ

→ Z ∼ N (0, 1)

Multivariate

~X ∼ N (~µ,Σ) → ~Z = Σ−
1
2 (~X − ~µ) → ~Z ∼ N (0, I)

use Σ = UD2UT ⇒ Σ
1
2 = UD
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When to Stop using Gaussians

Gaussians are very handy and can be used in a lot of situations, but be careful if one of the these points applies

to your problem:

Gaussians have only a single mode

Can use a mixture of Gaussians here

Gaussians do not have heavy tails

In many real world (empirical) distributions extreme events occur far more often than a Gaussian would allow
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Heavy Tails
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