
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Sequence Modelling and
Recurrent Neural Networks (RNNs)

Pattern Recognition

Dennis Madsen

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Topic overview

2

• Neural Networks (recap) and Deep Learning
• Improving DNN: Hyperparameter tuning, regularization,

optimization
• Convolutional Neural Networks (CNN)
• CNN popular architectures
• Sequence Models/Recurrent neural networks (RNN)

• RNN architecture
• Gated cells for long term dependencies
• Natural Language Processing (NLP)
• Transformer networks

• Beyond the basics
• Neural networks as a generative model

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Motivation

3

Given a single image instance of a ball - can we predict its direction?

???

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Motivation

4

Given a single image instance of a ball - can we predict its direction?

Given enough previous placements, it is possible to predict direction and magnitude

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Examples of sequence data

5
All of these problems can be addressed using supervised learning with labeled data

Source: https://www.coursera.org/learn/nlp-sequence-models/

Speech recognition
“The quick brown fox jumped
over the lazy dog.”

Music generation

Sentiment classification “There is nothing to like
in this movie.”

Machine translation Vil du synge med mig? Do you want to sing with me?

Video activity recognition Running

Name entity recognition Yesterday, Harry Potter
met Hermione Granger.

Yesterday, Harry Potter
met Hermione Granger.

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Words: One-hot representation

Words are represented as a one-hot feature representation.
The vocabulary is therefore fixed with words representing a single entry in a
vector.
For commercial applications, vocabularies of 30-50.000 words are often used.

6

x: "Last week I visited Paris, the capital of France."

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Why not a standard fully connected
NN?

Source: https://www.coursera.org/learn/nlp-sequence-models/

Problems:

● Input/outputs can be different lengths in different examples.
○ Example: language translation doesn't happen word to word.

● Does not share features across different locations (bag-of-words cannot be
used).
○ The food was good, not bad at all (positive).
○ The food was bad, not good at all (negative).

7

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Recurrent Neural network structure

Source: https://www.coursera.org/learn/nlp-sequence-models/

Unrolled representation Compact representation

8

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

RNN notation

Source: https://www.coursera.org/learn/nlp-sequence-models/

● First subscript of w defines the output of the multiplication.
● Second subscript of w defines what it is being multiplied with.

● g() is the activation function such as: tanh, sigmoid, ReLU.

9

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Types of RNNs

10
Source: http://karpathy.github.io/

• One to One: "Vanilla" neural network.
• One to Many: Music generation.
• Many to One: Sentiment classification.
• Many to Many: Translation.

http://karpathy.github.io/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020
De

ep
 R

N
N

 e
xa

m
pl

e

11
Source: https://www.deeplearningwizard.com/deep_learning/

https://www.deeplearningwizard.com/deep_learning/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Backpropagation through time!

Source: https://www.coursera.org/learn/nlp-sequence-models/

Cross-entropy loss for each output

W
ei

gh
ts

 sh
ar

ed
 a

m
on

g
m

od
ul

es

Forward
Backward

Total cost

12

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

RNN problems - vanishing gradients

Long term feature dependencies are very difficult to learn with a standard RNN.

• "The cat, which already ate …, was full."
• "The cats, which already ate …, were full."

13

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Vanishing/Exploding gradients

14
Source: http://karpathy.github.io/

Solutions:

1. Using ReLU activation functions to prevent shrinking the gradients.

2. Initialize the weights to the identity matrix

a. Biases still initialized to zero

3. Use a more complex recurrent unit with gates to control what information

is passed through.

Gated cells
LSTM, GRU, etc.

http://karpathy.github.io/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

15

LSTM
Long-short term memory

GRU
Gated Recurrent Unit

RNN
Recurrent Neural Network

g() = tanh is the above example

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Relevance gate: how relevant is the last feature in computing the next output?

Gated Recurrent Unit (GRU)
C = memory cell (remember singular or plural).

16

Update gate: decides when to update

Intuition: Gates are always on or off. They are modelled with a sigmoid function, so in practice very close to 0 or 1.

* is element-wise vector multiplication.

"The cat, which already ate …, was full."

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Gated cells problems

Forward propagating a sequence model only uses earlier information to predict
context information.

Example, is Teddy a name?
• He said, "Teddy Roosevelt was a great President."
• He said, "Teddy bears are on sale!"

One solution is to use a Bidirectional RNN structure

17
Source: https://www.i2tutorials.com/

https://www.i2tutorials.com/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

18

Still problematic - Words in context
Danish to english translation
• Hans is a name but does also mean his.
• Ged means goat, but often used when

something went wrong.
• Regner can be both rains and

calculates/computes.
• På spanden literally means on the

bucket but often used to say in trouble.

2020 update

There has been a goat in the budget
because Hans is raining badly, so in
short he is on the bucket for the rest
of the month.

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

19

A note on Natural Language Processing
Generalizing from one example of "apple juice" to another of "orange juice" is
not more intuitive than to "orange man".

I want a glass of orange _______ .

I want a glass of apple _______ .

Source: https://www.coursera.org/learn/nlp-sequence-models/

Apple
(456)

Orange
(6257)

King
(4914)

Woman
(9853)

Man
(5391)

Queen
(7157)

1-hot representation.

Man Woman King Queen Apple Orange

Gender -1.0 1.0 -0.95 0.97 0.0 0.01

Royal 0.0 0.0

Age

Food 0.95 0.97

...

https://www.coursera.org/learn/nlp-sequence-models/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

20

Word embedding word2vec

Source: Distributed Representations of Words and Phrases and their Compositionality (NIPS2013)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Country and Capital Vectors Projected by PCA
China

Japan

France

Russia

Germany

Italy

Spain
Greece

Turkey

Beijing

Paris

Tokyo

Poland

Moscow

Portugal

Berlin

Rome
Athens

Madrid

Ankara

Warsaw

Lisbon

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4

“Madrid”-”Spain”+”France” = “Paris” (closest vector)

!"#$

%&'(#)))))))))))'*+,-.#/+&))))))+(#'(#

!"#01$

!"#02$

!"#32$

!"#31$

Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j #=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

Training objective is to learn word
vector representations that are good
at predicting the nearby words.

“cat”

“car”

Model works as a lookup table

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

21

Transformers
One of the main problems with Gated cells is their lack of parallelism.
• A sentence is processed one word at the time.
• Makes both training and inference slow.

Transformers can process data in parallel
• Uses an encoder-decoder architecture
• 6 encoders + 6 decoders is setup in parallel
• Attention/importance for each word is computed

Source: Attention is all you need (NIPS 2017)

Tr
an

sf
or

m
er

 –
m

od
el

 a
rc

hi
te

ct
ur

e

The

cat

is

brown

Sample sentence: “The cat is brown”

0.80 0.13 0.04 0.03

0.2 0.62 0.08 0.10

0.05 0.25 0.42 0.28

0.04 0.33 0.12 0.51

Average attention vectors over N parallel systems

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Sequence modelling summary

• RNNs can be used to model sequence tasks.

• Model sequences are traditionally modelled via a recurrence relation.

• Training RNNs can be done with back-propagation through time and a gradient based

optimizer.

• Gated cells like GRU let us model (reasonable) long-term dependencies.

• RNN networks suffer from slow training and inference time.

• Transformer networks works in parallel and can model very long-term dependencies.

22

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Generative Models
Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)
Transformer network implementations (BERT, GPT-3)

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Autoencoders
• Basic Autoencoder network

• With linear activation functions, this is similar to Principal Component Analysis (PCA).

24
Source: https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

The basic autoencoder contains gaps in the latent space.
Latent space not well separated.

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Variational Autoencoders (VAE)
• Encoder is learning an approximation of the posterior distribution.
• Latent space is regularized to a standard normal distribution.

25
Source: https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

Means of MNIST digits

https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Generative Adversarial Network (GAN)

• Generator objective: Fool the discriminator network by generating more real
images.

• Discriminator objective: Become better in discriminating real and fake images

26

Latent vector z

Loss

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

StyleGAN

27
Source: A Style-Based Generator Architecture for Generative Adversarial Networks, Tero et al. NVIDIA

https://thispersondoesnotexist.com/
https://thiscatdoesnotexist.com/

https://thispersondoesnotexist.com/
https://thiscatdoesnotexist.com/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Transformers

28Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Source: Language Models are Few-Shot Learners

BERT (Google) – Bidirectional Encoder Representations for Transformers
• 340 million parameters (Large)
• Fine tune to specific task with additional output layer

GPT-3 (OpenAI) – Generative Pre-trained Transformer
• 175 billion parameters
• Can perform specific tasks without any special tuning by providing a few

examples (less than 10):
• Translation
• Programmer
• Author

%(57 %(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@ 7RN�� �>6(3@��� 7RN�1 7RN�� ��� 7RN0

4XHVWLRQ 3DUDJUDSK

6WDUW�(QG�6SDQ

%(57

(>&/6@ (� �(>6(3@��� (1 (�¶ ��� (0¶

& 7� 7>6(3@��� 71 7�¶ ��� 70¶

>&/6@ 7RN�� �>6(3@��� 7RN�1 7RN�� ��� 7RN0

0DVNHG�6HQWHQFH�$ 0DVNHG�6HQWHQFH�%

3UH�WUDLQLQJ)LQH�7XQLQJ

163 0DVN�/0 0DVN�/0

8QODEHOHG�6HQWHQFH�$�DQG�%�3DLU�

64X$'

4XHVWLRQ�$QVZHU�3DLU

1(501/,

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Transformers

29Source: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Source: Language Models are Few-Shot Learners Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show

four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Transformers

30
Source: Language Models are Few-Shot Learners

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

sufficient to enable a human to perform a new task to at least a reasonable degree of competence. Aside from pointing
to a conceptual limitation in our current NLP techniques, this adaptability has practical advantages – it allows humans
to seamlessly mix together or switch between many tasks and skills, for example performing addition during a lengthy
dialogue. To be broadly useful, we would someday like our NLP systems to have this same fluidity and generality.

One potential route towards addressing these issues is meta-learning1 – which in the context of language models means
the model develops a broad set of skills and pattern recognition abilities at training time, and then uses those abilities
at inference time to rapidly adapt to or recognize the desired task (illustrated in Figure 1.1). Recent work [RWC+19]
attempts to do this via what we call “in-context learning”, using the text input of a pretrained language model as a form
of task specification: the model is conditioned on a natural language instruction and/or a few demonstrations of the task
and is then expected to complete further instances of the task simply by predicting what comes next.

While it has shown some initial promise, this approach still achieves results far inferior to fine-tuning – for example
[RWC+19] achieves only 4% on Natural Questions, and even its 55 F1 CoQa result is now more than 35 points behind
the state of the art. Meta-learning clearly requires substantial improvement in order to be viable as a practical method of
solving language tasks.

Another recent trend in language modeling may offer a way forward. In recent years the capacity of transformer
language models has increased substantially, from 100 million parameters [RNSS18], to 300 million parameters
[DCLT18], to 1.5 billion parameters [RWC+19], to 8 billion parameters [SPP+19], 11 billion parameters [RSR+19],
and finally 17 billion parameters [Tur20]. Each increase has brought improvements in text synthesis and/or downstream
NLP tasks, and there is evidence suggesting that log loss, which correlates well with many downstream tasks, follows a
smooth trend of improvement with scale [KMH+20]. Since in-context learning involves absorbing many skills and
tasks within the parameters of the model, it is plausible that in-context learning abilities might show similarly strong
gains with scale.

1In the context of language models this has sometimes been called “zero-shot transfer”, but this term is potentially ambiguous:
the method is “zero-shot” in the sense that no gradient updates are performed, but it often involves providing inference-time
demonstrations to the model, so is not truly learning from zero examples. To avoid this confusion, we use the term “meta-learning”
to capture the inner-loop / outer-loop structure of the general method, and the term “in context-learning” to refer to the inner
loop of meta-learning. We further specialize the description to “zero-shot”, “one-shot”, or “few-shot” depending on how many
demonstrations are provided at inference time. These terms are intended to remain agnostic on the question of whether the model
learns new tasks from scratch at inference time or simply recognizes patterns seen during training – this is an important issue which
we discuss later in the paper, but “meta-learning” is intended to encompass both possibilities, and simply describes the inner-outer
loop structure.

4

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH+20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

Dataset
Quantity
(tokens)

Weight in
training mix

Epochs elapsed when
training for 300B tokens

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their test or development sets inadvertently seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the development and test sets of all benchmarks studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

2.3 Training Process

As found in [KMH+20, MKAT18], larger models can typically use a larger batch size, but require a smaller learning
rate. We measure the gradient noise scale during training and use it to guide our choice of batch size [MKAT18]. Table
2.1 shows the parameter settings we used. To train the larger models without running out of memory, we use a mixture
of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models
were trained on V100 GPU’s on part of a high-bandwidth cluster provided by Microsoft. Details of the training process
and hyperparameter settings are described in Appendix B.

9

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Transformers for image classification

31
Source: An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale, (2020 under review)

Preprint. Under review.

Transformer Encoder

MLP
Head

Vision Transformer (ViT)

*

Linear Projection of Flattened Patches
* Extra learnable

 [c l ass] embedding

1 2 3 4 5 6 7 8 90Patch + Position
Embedding

Class
Bird
Ball
Car
...

Embedded
Patches

Multi-Head
Attention

Norm

MLP

Norm

+L x

+

Transformer Encoder

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H,W) is the resolution of the original
image, C is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P

2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0

L
) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L
. The classification head is implemented by a MLP with one hidden layer at pre-training

time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.3). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
The MLP contains two layers with a GELU non-linearity.

z0 = [xclass; x
1
p
E; x2

p
E; · · · ; xN

p
E] +Epos, E 2 R(P 2·C)⇥D

, Epos 2 R(N+1)⇥D (1)

z0` = MSA(LN(z`�1)) + z`�1, ` = 1 . . . L (2)
z` = MLP(LN(z0`)) + z0`, ` = 1 . . . L (3)

y = LN(z0
L
) (4)

Hybrid Architecture. As an alternative to raw image patches, the input sequence can be formed
from feature maps of a CNN (LeCun et al., 1989). In this hybrid model, the patch embedding
projection E (Eq. 1) is applied to patches extracted from a CNN feature map. As a special case,
the patches can have spatial size 1x1, which means that the input sequence is obtained by simply

3

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Deep learning outlook

• Deep learning is everywhere and will spread to even more
areas in the years to come.

• Even though DL is popular, one should always analyze the
problem at hand and pick the best tool.

• Still many open problems within DL:
• Architecture understanding.
• Reasoning capabilities, e.g. from context.
• Robustness against adversarial attacks.
• Fully unsupervised learning systems to avoid tedious

labeling process.

32

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Deep learning energy

Training artificial intelligence is an energy
intensive process. New estimates suggest
that the carbon footprint of training a
single AI is as much as 284 tonnes of
carbon dioxide equivalent – five times the
lifetime emissions of an average car.

33
Source: https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

https://www.newscientist.com/article/mg24031992-100-ais-dirty-secret-energy-guzzling-machines-may-fuel-global-warming/
https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Deep learning detection robustness

Spot a pedestrian walking walking in front
of a car coming with 20 MPH.
Only 40% of adult collisions in optimal
conditions were avoided.
At night, the systems didn’t even ping the
driver to reduce speed.

34
Source:https://www.extremetech.com/extreme/299715-aaa-car-testing-shows-pedestrian-detection-tech-is-far-from-effective

https://www.extremetech.com/extreme/299715-aaa-car-testing-shows-pedestrian-detection-tech-is-far-from-effective

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Deep learning prediction

35
Source: https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-learning-will-do-everything/

• Co-author of:
• Learning representations by back-propagating errors (1986)

• ImageNet Classification with Deep Convolutional Neural Networks (2012)

• Awarded the Turing Award together with Yann LeCun and Yoshua Bengio in 2019

• “I do believe DL is going to be able to do averything”
• BUT: we need more breakthroughs like e.g. Transformers

• We need scale (data + models)

• Human brain: ~100 trillion parameters

• GPT-3: 175 billion parameters (0.1% of the brain)

https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geoffrey-hinton-deep-learning-will-do-everything/

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2020

Credits
Books:
• https://www.deeplearningbook.org/
• http://neuralnetworksanddeeplearning.com/

Online Course from MIT:
• http://introtodeeplearning.com/

Online course from Stanford University:
• https://www.coursera.org/specializations/deep-learning?

Other

• cs231n.github.io
• appliedgo.net
• brohrer.github.io
• learnopencv.com

36

https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/
http://introtodeeplearning.com/
https://www.coursera.org/specializations/deep-learning?

