ROBUST REGISTRATION OF STATISTICAL SHAPE MODELS FOR UNSUPERVISED PATHOLOGY ANNOTATION

Dana Rahbani, Andreas Morel-Forster, **Dennis Madsen**, Marcel Lüthi and Thomas Vetter Department of Mathematics and Computer Science, University of Basel

PROBLEM STATEMENT

Statistical shape model Generates shape Γ using coefficients $\vec{\alpha} \sim \mathcal{N}(0, 1)$ and the set of principal components from PCA:

Model fitting Finding shape and pose parameters $\vec{\theta}$ given a target shape, by minimizing the distances between the model surface Γ and target:

Can we detect pathologies in a novel target given a healthy SSM?

CONTRIBUTION

- Unsupervised probabilistic approach for pathology labeling on surfaces
- Robust registration algorithm for fitting SSMs to pathological data

THEORY

Find $\vec{\theta}$ and label map \vec{z} that maximize the posterior distribution given target \hat{M} , with the SSM shape prior $P(\vec{\theta})$ and a uniform distribution prior for $P(\vec{z})$:

$$P(\vec{\theta}, \vec{z} \mid \hat{M}) \propto L(\hat{M} \mid \vec{\theta}, \vec{z}) P(\vec{\theta}, \vec{z})$$
(1)

Likelihood Evaluate similarity of model surface Γ and target, using point distances d_i and region distance likelihoods (l_h : healthy, l_o : outlier):

$$L(\hat{M} \mid \vec{\theta}, \vec{z}) = \prod_{i \in \Gamma} l_h d_i(\vec{\theta}, \hat{M})^{z_i} l_o(d_i(\vec{\theta}, \hat{M})^{1-z_i}$$
(2)

Outlier detection (E-step) Fix $\vec{\theta}$. Maximize (2) with respect to \vec{z} by classifying bi-directional correspondence [1] distances (k_h : healthy class, k_o : outlier class):

$$L(\hat{M}, \vec{\theta} \mid \vec{z}) = \sum_{i \in \Gamma} \sum_{k \in h, o} z_{i,k} l_k(d_i)$$
(3)

Outlier-aware fitting (M-step) Fix \vec{z} . Maximize (2) with respect to $\vec{\theta}$ by minimizing the distances of points within their classes [2]:

$$L(\hat{M}, \vec{z} \mid \vec{\theta}) = \sum_{i \in k_o} l_o(d_i(\vec{\theta}, \hat{M}) + \sum_{i \in k_b} l_h(d_i(\vec{\theta}, \hat{M}))$$
(4)

FUTURE WORK

- Investigate replacements for distance metric in double-projection step
- Evaluate on public datasets for pathology detection on surfaces

REFERENCES

- [1] D. Chetverikov, D. Stepanov, and P. Krsek, "Robust euclidean alignment of 3d point sets: The trimmed iterative closest point algorithm," *Image and Vision Computing*, 2005.
- [2] B. Egger, S. Schönborn, A. Schneider, A. Kortylewski, A. Morel-Forster, C. Blumer, and T. Vetter, "Occlusion-aware 3d morphable models and an illumination prior for face image analysis," *IJCV*, 2018.

PIPELINE

EVALUATION ON 25 SURFACES

- **Detection** True positive rate (TPR) and F1 score, best at 1
- Fitting Hausdorff (HD) and Average distances (AD), best at 0 mm

	Standard SSM no detection	Robust SSM thresholded	Outlier-aware SSM probabilistic
TPR	_	0.39	0.56
F1	_	0.51	0.68
HD	4.48	6.07	1.98
AD	1.14	1.52	0.88

APPLICATION TO CLINICAL DATA

- Radius With added data (implants and overgrowth)
- Skull With missing data (teeth)

